2020 CERN BL4S 加速器物理实验设计大赛

1. 大赛简介

Beamline for Schools (BL4S) 是一项由位于瑞士日内瓦的欧洲核子研究中心 (CERN) 组织的国际比赛。 它面向全世界高中生开放。

每支参赛队由至少五名学生和一名成年导师组成。在本次比赛中,他们可以提出一个他们想做的物理学实验。获胜的队伍可以去位于德国的世界顶尖的加速器研究中心 DESY,并在那里和CERN, DESY的专业科学家一起做实验。


2. 比赛时间

(1) 2019年7月 开始报名:提供你的组名,国家以及导师的联系方式来接收邮件更新。

(2) 2020年3月31号中欧标准时间午夜:提案提交截止:在 欧洲标准时间午夜前提交你的1000字的提案以及一分钟视频。提案可以被提交直到截止日期3月31号中欧标准时间午夜。

(3) 2020年6月:获胜者通知:CERN和DESY宣布获胜者,获胜者会被邀请去DESY。其他最多20个shortlisted的组也会被邀请。

(4) 2020年9-10月:获胜者在DESY做他们的实验。确切日期会跟获胜者确认。


3. 参赛者要求

(1) 组员: 高中学生。



(2) 小组人数





4. 实验项目要求



5. Proposal提交要求

(1) 书写的提案


1) 你为什么想来DESY

2) 你的实验想法以及你希望如何使用particle beamline来做你的实验

3) 你希望从实验里学到什么


(2) 提案视频



(3) 如何评估你的提案

1) 实验的可行性

2) 追寻科学方法的能力

3) 你对实验的动力以及你想来DESY/LNF的理由

4) 你试验以及视频的创造力

6. 奖项


2020的两个获胜队会赢得一个大概2个礼拜的旅行去德国汉堡的DESY 做他们提案中的实验。BL4S会承担所有获胜者参赛的费用,包括旅行,当地路费,住在DESY的费用,以及一日三餐。 在来到研究实验室之前,获胜的团队会有机会和科学家一起探讨他们对于做实验的想法,并规划实验。

(2)入围队伍:除了获胜队,最多30组会被shortlist。这些组会收到一个CosmicPi particle detector给他们的学校,以及每个组员会收到一件BL4S  T恤。

(3)所有的参赛者:所有参赛者会收到BL4S 电子证书来证明你交了你的提案。


7. 往届获奖作品

年份 队名(国家) 项目名称(带proposal pdf文档下载地址超链接)
2019 DESY Chain (US) A Cross-Particle Comparison of Scintillator Characteristics
Particle Peers (The Netherlands) The difference between the development and shape of a particle shower as a result of a beam of electrons or a beam of positrons perforating graphite
2018 Beamcats (Philippines) Determining the relationship between the energy of a π meson beam and its ability to penetrate and react with a carbon-based, non -biological material to determine the viability of "pion therapy" - an alternative Method for cancer treatment
Cryptic Ontics (India) The Shape of 'μ' (The Magneto-Muon Dependance)
2017 Charging Cavaliers (Canada) The Quest for Fractionally Charged Particles
TCO-ASA (Italy) Liceo Scientifico Statale "T.C.Onesti", Fermo, Italy
2016 Pyramid Hunters (Poland) The secret chambers in the Chephren Pyramid
Relatively Special (UK) On the special theory of relativity and the lorentz factor
2015 Leo4G (Italy) More than a webcam: low-cost particle detector
Accelerating Africa (South Africa) Crystal Undulator Radiation
2014 Odysseus' Comrades (Greece) A nature’s preference
Dominicuscollege (The Netherlands) Crystal calorimeter

8. 参赛费用

没有费用,参加比赛是完全免费的。 获胜的队伍,BL4S会完全承担费用,包括路费,住的地方,以及一日三餐。


9. Examples for Experiments that can be done at the DESY Beam Lines

Beamline for Schools 2019



Please note that in order to succeed in Beamline for Schools you can either propose a creative experiment or idea yourself or take one of the examples and work out the details of that experiment.

Example 1: Explore the world of antimatter   探索反物质世界

The particles in the beam at the DESY beam line are either electrons or positrons. Some of the properties of antimatter have only been theoretically predicted but never been measured in an experiment. Right now, professional physicists at CERN are preparing experiments to measure the effect of gravity on antimatter or to observe its hyperfine structure. While such experiments are not feasible within the boundary conditions of BL4S, you could compare the properties of electrons and positrons, for example by observing how they are deflected in a magnetic field.

Example 2: Characterization of MicroMegas (or other) detectors     MicroMegas检测器的特征

Recently, the Beamline for Schools scientists built four state of the art MicroMegas detectors. Studying them in full is a long ongoing process that requires a series of measurements in a number of conditions. What is the maximum rate of the detectors? What is their spatial resolution? How do the environmental conditions affect their performance? Many more questions are waiting to be answered. Propose a series of measurements at the DESY beam lines that will allow the characterization of the detectors and will expose their limits. This is your chance to drive our continuous R&D efforts.

MicroMegas are not the only detectors at your disposal. Feel free to browse the "beam and detectors" document and propose a series of measurements to study any one of them and help us to improve them.

Example 3: Measure the beam composition of the DESY beam line at various beam momenta   在不同的光束力矩下测量DESY光束线的光束成分

The 6.3 GeV/c primary electron beam of DESY II impinges on a carbon fiber target producing photons, which are then converted again into electron/positron pairs. The secondary beam line is set up to select the particles of various momenta, between 0.5 and 6 GeV/c. This selection is based on the deflection in the bending magnets and the collimators.

The momentum composition of the beam is well known but we at Beamline for Schools have never measured it. Propose a series of measurements to measure the momentum distribution or to identify different particles and in the process, you may discover rare particles that are not described in the “Beam and detectors” document.

Example 4: Measure beam absorption properties of materials  测量材料的光束吸收特性

Find out how many electrons survive different materials! Can you look inside an object using the electron beam as it can be done with x-rays? Please note: Only non-combustible, non-biological materials can be tested at DESY. Can you measure the energy of a particle after it has passed through some material?

Example 5: Generate your own photon beam  生成自己的光子束

While we cannot generate a photon beam directly, you could generate photons by using the electron beam scattering at a target, generating a Bremsstrahlung photon and then use a magnet to remove the remaining electrons. How can you measure the energy of the photons?

Example 6: Searching for new particles  搜索新粒子

Many theories predict new very weakly interacting particles, which pass through matter almost without any interaction. These particles can be produced by dumping a particle beam onto a beam dump and then searching for particles behind the dump. No known particles besides the occasional muon should pass through the dump, so if one is detecting particles there, this could be evidence for new physics.

Example 7: Build and test your own detector  构建并测试您自己的检测器

Design your own detector and calibrate it with the beam at DESY! A particle detector does not have to be a high-tech device that is beyond the reach of a team of students. In the early days of particle physics, cloud chambers and photographic emulsions have been used as particle detectors. Even some electronic detectors are not that complicated to make.


10. BL4S submission form 2020: information needed


1. 关于团队:











(11)所有参赛者的T-shirt大小万一他们被shortlist(女性:S,M,L,XL 男性:S,M,L,XL,XXL)


2. BL4S 提案以及地址







3. 关于以下话题的调查







(7)你的组有没有跟BL4S的national contacts联系